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Isothermal Newtonian film flow is put forward as a simple model of the film 
casting process. Methods of linear hydrodynamic stability theory are applied 
to study the stability of the film flow. The relevant eigenvalue problems are 
formulated and solved numerically. Results are presented in the form of neutral- 
stability curves in the appropriate parameter space. For the case of two- 
dimensional disturbances stability results obtained here are compared with 
those of Pearson & Matovich (1969) and Gelder (1971) for the stability of iso- 
thermal Newtonian threadline flow. 

1. Introduction 
As a model of melt spinning of polymer fibres Matovich & Pearson (1969) 

studied the mechanics of molten threadlines undergoing steady non-uniform 
axially symmetric extension. Confining their attention to highly viscous systems, 
Pearson & Matovich (1969) investigated the spatial growth of small disturbances 
imposed at  the die-exit end of the threadline. The imposed disturbances were 
assumed to have the general forms a*(x) e-iwt and v*(x) e-iwt, where a*(x) and 
v*(x) represent the amplitudes of the radius and velocity disturbances; w ,  
assumed to be real, is the frequency of the imposed infinitesimal disturbances, 
x is the co-ordinate in the direction of flow with the die-exit at  x = 0 and the 
wind-up mechanism at x = 1 and t is time. As a measure of the sensitivity of the 
threadline flow to such disturbances, Pearson & Matovich obtained the amplifica- 
tion of the radius disturbance, i.e. a*(Z)/a*(O), as a function of the frequency and 
the overall extension of the threadline. The overall extension is defined as the 
ratio of the steady threadline velocity at  x = 1 to the velocity at  x = 0. For the 
case where the velocity disturbance vanishes at  both ends of the threadline 
the amplification curves of the radius disturbance exhibit singular points, i.e. the 
ratio becomes infinite for certain combinations of extension ratio and imposed 
frequency. These singular points were interpreted by Pearson & Matovich as 
possible unstable operating points of the melt spinning process. Gelder (1971) 
reformulated the disturbance equations of Pearson & Matovich as an eigenvalue 
problem. The parameters of the eigenvalue problem are w and the overall 
extension of the threadline. w is now permitted to be complex. By solving the 
eigenvalue problem, Gelder showed that at  the singular points of Pearson & 
Matovich the eigenvalue problem has non-trivial neutrally stable solutions. 
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FIGURE 1. The film casting process. 

The present work is concerned with the stability of the film casting process, 
which is shown schematically in figure 1. The equations governing the behaviour 
of infinitesimal disturbances are derived and the eigenvalue problem is set up 
and solved. Results are presented in the form of neutral-stability curves in the 
appropriate parameter space. If the disturbances are assumed to  be uniform 
across the width of the film the eigenvalue problem of Gelder is re-obtained. 
However, with the introduction of disturbances which allow for variations across 
the width, the stability calculations for extending films become much more 
complicated. 

2. Steady isothermal Newtonian film flow 
A simple slow viscous model of the film casting process is introduced here. 

This forms the basis for the subsequent stability studies. This model, isothermal 
Newtonian film flow, considers only the melt drawing stage of the film casting 
process. Die swell has been analysed only recently (Zidan 1969; Richardson 
1970) and will be ignored. The geometry of the model together with the co- 
ordinates and velocity components employed is shown in figure 2. 

I n  film casting the polymer melt, which emerges continuously from the die, is 
allowed to fall vertically onto a chill-roll assembly. The linear speed of the film 
increases as it is drawn towards the chill-roll by the wind-up mechanism. Since, 
in practice, the width of the film is very large compared with its thickness and 
often much larger than the distance between the die and the chill-roll, the flow 
field can be considered to  be effectively of infinite extent in the z direction. As 
a result, the flow can be regarded as two-dimensional and all steady flow quanti- 
ties in the film flow model are assumed to be independent of z.  The velocity is 
assumed to have no z component, i.e. w = 0. Experimental observations of the 
film casting process confirm the validity of these simplifying assumptions. Of 
course such a simple model fails to take into account the necking-in and thickening 
of the edges observed in practice. The mechanics of the flow near the edges are 
complex and have not been analysed. Until this has been done there is no means 
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of knowing the effects of the edges on the results of the stability analyses pre- 
sented below. 

As the polymer emerges from the die, the die-imposed velocity profile will 
rapidly decay away because of the great reduction in magnitude of the viscous 
forces acting on the surfaces of the fluid. Beyond the die-swell region it is 
reasonable to assume that the relaxation process is complete and the variation 
in the y direction of the x velocity is much less significant than its variation in 
the x direction. In  the film flow model of the process it is therefore possible to 
approximate u(x, y )  by u(x). Quantitative justification of this approximation 
would involve consideration of the magnitude of the surface forces, e.g. surface 
tension and aerodynamic drag (both of which are neglected in this study). The 
point is closely argued in Matovich. (1966) and in Pearson & Petrie (1970). 

With the above assumptions, as a consequence of the continuity equation for 
incompressible fluids, v can only depend linearly on y and can be written as 

v = e,,y, 

e,, = -du/dx. 

It is obvious that e,, is the yy component of the rate-of-strain tensor. To the 
degree of approximation made, the rate-of-strain tensor is 

du/dx 0 0  [ : - d U F  :I. 
Assuming that the fluid is Newtonian with constant viscosity p, the non- 
vanishing components of the stress tensor can be shown to be 

t,, = - p + 2p duldx, (3) 

t,, = - p - zp du/dx, (4) 

t,, = -P, (5) 

where p is the isotropic pressure. In  most polymer film casting operations the 
viscosity of the melt is high and the velocity involved is small so the appropriate 
Reynolds number is small. Under these conditions viscous forces will dominate, 
and all but viscous and pressure terms in the momentum equations can be 
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neglected. This then requires tyy to remain constant in the flow field. If the 
ambient pressure is taken to be zero, this constant becomes zero. Equations (3) 
and ( 4 )  then give 

= - Z , ~ d u / d x ,  t,, = 4 , ~ d u / d x .  (6) 

ht,, = f .  (7 )  

The integrated momentum balance in the x direction gives 

f is a constant which can be identified with the applied tension per unit width of 
the film (see appendix). The kinematic condition on the surface of the film 
requires, for steady flow, 

i d h l d x  = v/u at y = rf: ih.  

This equation together with ( 1 )  and ( 2 )  gives 

d h  h d u  - --- z -  u d x ‘  

Q ,  the fixed volumetric flow rate per unit width of the film, is related to u and 

Q = ah. 
h by 

Solving (1)-(8) yields 
u = uo exp [fX/(4PQ)I,  

h = ho exp [ -fX/(4PQ)I,  

v = 2voyexp [fXl(4PQ)llhO, 

vo = - u o h o f / ( @ Q ) -  
where vo is defined by 

The physical interpretations of u,,, vo and ho are self-evident. The following 
dimensionless variables will now be introduced : 

2y  - 13 - U 

1 ’  ho ’ h0’ UO’ VO’ 
y = -  H = -  u = -  v=?. X x=- 

together with the dimensionless parameter 

P = f 1 / ( 4 ~ & ) .  

1 in the above expressions is the distance between the die and the chill-roll (see 
figure 1). Overbars are used to denote dimensionless properties of the steady 
flow. In  terms of these dimensionless quantities, the steady film flow is described 

(9) 
by - 

= eBX, H = e-px, i7 = Y e B X ,  
w i t h O < X <  1. 

The single parameter P completely characterizes the steady film flow. /3 is 
the natural logarithm of the overall extension undergone by the film. For 
normal film casting operations /3 can be as large as 4.0 (Schenkel 1966, p. 335). 
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3. The disturbance equations 

obtained. The perturbed flow is assumed to be described by 
Infinitesimal disturbances are now introduced into the steady solution just 

The general notation of linear hydrodynamic stability analysis has been adopted 
here. The real parts of U*, Y V* and W* multiplied by the exponential factors 
represent the disturbances to the three velocity components. Similarly H* 
represents the thickness disturbance. The dimensionless variables Z and T are 
defined by 

Z = 211, T = tuo/l. 

a and L! are respectively the dimensionless wavenumber and dimensionless 
frequency. For disturbances bounded in the Z direction a can only be real. 
L! is generally complex; R = R, .+ iQ .  The disturbance velocity W* has been 
made dimensionless with respect to uo. 

Substituting (10) into the dimensionless form of the continuity equation yields 

pu*+ u*'-pV*+iaw* = 0. (11) 

In  (1 1)  and all subsequent equations relating the disturbance quantities, quad- 
ratic and higher-order terms in U*, V*, W* and H* have been suppressed. 
A prime denotes d/dx.  Mass balance over an infinitesimal element of the film gives 

auh awh ah 
_. +- =-- 

as shown in the appendix. In  terms of infinitesimal disturbances this becomes 

ax a2 at 

H*'+ U*'+iaW*-iRe-BXH* = 0. (12) 

If isothermal Newtonian behaviour with constant viscosity is assumed the 
non-zero components of the stress tensor in the perturbed flow can be shown 
to be 

Txx = pxx+T:x = 4dU/dX+Z(pU*+ U~'+PV*)ei(az-nT)eaxl 

T,, = ~ , , + T ~  = 2( ia~V*+PV*)e i (aZ-RT)ePX+Bd~ldX ,  

Tx, = 0 + T:, = (iaU* +pW* + W*') ei(az-QT)ePx. 

Fxx and p,, are the dimensionless stress components in the steady flow. The 
stress tensor has been made dimensionless with respect to puo/Z. Neglecting all 
but viscous terms, the momentum equations reduce to 

aht,,/ax + ahtx,p2 = 0, 

ahtx,/az + aht,,/aZ = o 
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(see appendix). Converting these into dimensionless form and substituting in 
the expressions for the dimensionless stress tensor gives 

4U*"+4/3U*'-a2U*+3iaW*'+iu/3W*+4~H~' = 0, (13) 

(14) 3iaU*'+ 2iapU" - 4a2W* +PW*'+ W*" + 2i0lpH" = 0. 

To derive the last two equations, (1  1)  was used to eliminate V * .  
Equations (12)-( 14) form a fifth-order set of homogeneous simultaneous 

ordinary differential equations in U*, W* and H*. There are two sets of boundary 
conditions for this differential system that are of interest. The first set is 

I U*(O) = W*(O) = H*(O) = 0) 

U * ( l )  = W*(l) = 0, 

i.e. no velocity disturbance on the flow boundaries X = 0, 1 and no thickness 
disturbance at  X = 0. These are the appropriate conditions for film casting 
operations in which the wind-up speed is held at  fixed values. This case is the 
analogue of the constant-velocity spinning considered by Pearson & Matovich 
(1969) and Gelder (1971). The second set of boundary conditions is 

(16) i U*(O) = W*(O) = H*(O) = 0) 

W*(l) = 0) 

2/3U*(I)+SU*'(I)+2/3H"(l) = 0. 

This is the analogue of the constant-tension spinning analysed by Pearson & 
Matovich. The third equation in this set is obtained from the assumption that 
the applied tension remains constant in the perturbed flow. 

4. The eigenvalue problem 
Equations (12)-( 14) together with the homogeneous boundary conditions (15) 

or (16) constitute an eigenvalue problem. The parameters of the problem are 
a, p and Q. For a particular a and ,8 there is a denumerably infinite number of 
Q's for which the eigenvalue problem has non-trivial solutions. A direct numerical 
scheme has been developed to find these eigencombinations of the parameters 
a, /3 and Q. The scheme is a simplification of the general scheme developed by 
Mack (1965) to deal with the stability of forced-flow compressible boundary 
layers. Briefly, the procedure involves finding a set of linearly independent 
solutions of (12)-( 14). These solutions all satisfy the homogeneous boundary 
conditions at X = 0 of (15) or (16). They are combined so that all but one of the 
boundary conditions a t  X = 1 are satisfied. Finally the parameters are varied 
so that this last boundary condition is met as closely as desired. The linearly 
independent solutions are obtained by solving (12)-( 14) as an initial-value 
problem (with appropriately chosen initial values). The actual integration of 
the differential system is performed by the standard fourth-order Runge-Kutta 
procedure. A simple linear search procedure is used to vary the combination of 
the parameters a, /3 and Q. For numerical details see Yeow (1972). In general, for 
a given a and /3, the scheme is applied to locate the first three of the infinitely 
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FIGURE 3. Neutral-stability curves for (a) constant-velocity and ( b )  constant-tension 

boundary conditions. Values of SZ, indicated on curves. 

many Q’s which together with a and p constitute eigencombinations of the 
parameters. 

For a particular a and p each of these infinitely many Q’s corresponds to a mode 
of growth or decay of the disturbances. If all these Q’s have negative imaginary 
part, the flow, characterized by p, is stable to the disturbance characterized 
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by the given a. If one or more of the Q’s have positive imaginary part the flow 
is considered unstable to this disturbance. The flow is only regarded as stable if 
it is stable for all a’s. Neutral stability occurs when one of the Q’s is real. In- 
spection of (12)-( 14) and the homogeneous boundary conditions shows that if 
(a,  p, Q) is an eigencombination then (a,  p, - a), where a is the complex con- 
jugate of 0, is also an eigencombination. Clearly if (a,P, Q) is stable/unstable 
then (a,  p, - 0)  is also stable/unstable. Therefore Q,. < 0 does not provide any 
new information about the system, and only Q,. B 0 need be considered. 

The loci in the p, a plane of the neutrally stable eigencombinations of the 
parameters a, /3 and Q are curves which separate the plane into stable and 
unstable regions. On these curves Q, varies continuously. The three neutral- 
stability curves corresponding to the first three modes of disturbance under 
constant-velocity boundary conditions are shown in figure 3 (a) .  Some values of 
Q,. are indicated on the curves. The regions of stability and instability are also 
indicated on the figure. Figure 3 ( b )  gives the lowest neutral-stability curve for 
constant-tension boundary conditions. Some values of 8, are indicated on the 
curve. The regions of stability and instability are as shown in the figure. 

5. Discussion 
Consider the case of constant-velocity film casting. Figure 3 (a )  indicates that, 

as ,8 is increased for a given a, there is a critical /3 beyond which the film flow 
becomes unstable. The smallest critical p is 3.006, corresponding to a = 0. Since 
p, as defined, is the ratio of the applied tension to a typical viscous force, it can 
be concluded that, while viscous forces are stabilizing, the applied tension is 
destabilizing. I n  figure 3 (a )  all the neutral-stability curves intersect the p axis 
and the lowest /3 for transition from stability to instability occurs a t  a = 0, i.e. 
there is an analogy with Squire’s law for parallel shear flow, which states that 
two-dimensional disturbances (i.e. a = 0) are more unstable than the three- 
dimensional ones. If a is set to zero in (i2)-( 15) it can be shown that the eigen- 
value problem reduces to the one considered by Gelder. The intersections of 
the neutral-stability curves with the a = 0 line are precisely the singular points 
of Pearson & Matovich and the neutral-stability points of Gelder for constant- 
velocity spinning. The stability of the Newtonian film flow to two-dimensional 
disturbances is governed by the same set of equations as that describing the 
stability of Newtonian threadline flow. This is however not necessarily the case 
if the material is assumed to be non-Newtonian. 

A special feature of the first neutral-stability curve in figure 3(a )  is worth 
noting. On this curve Q, decreases from 14.01 a t  a = 0, p = 3-006 to zero at 
a = 5-80, p = 5-14. Beyond this point Q,. increases again but very slowly. This 
means that at p = 5.14 the film is capable of sustaining a steady periodic dis- 
turbance with wavenumber 5.80, i.e. the neutral mode at this point is a secondary 
flow. However this secondary flow is not realizable as for p = 5.14 the flow is 
unstable to disturbances with wavenumber a < 5.80. 

The first neutral-stability curve for boundary conditions of consta,nt applied 
tension, figure 3 ( b ) ,  is quite different in shape from that of figure 3(a) .  In  this 
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case the neutral-stability curve does not intersect the /3 axis. By putting a = 0 
in (12)-(14) and boundary conditions (16) Yeow (1972) has shown that the 
eigenvalue problem has no non-trivial solution. This fact is consistent with the 
amplification curves of Pearson & Matovich, which show no singularity for 
spinning with constant applied tension. Under boundary conditions (16) the 
most unstable disturbance has a wavenumber of 6.9. This disturbance becomes 
unstable when p = 7.72. The critical /3 is larger than the critical ,8 for constant- 
velocity boundary conditions, and is unlikely to be attained in any actual process. 

Results of the above analyses indicate that under constant-velocity boundary 
conditions the isothermal film flow is unstable to infinitesimal disturbances for 
p > 3.006, i.e. overall extension > 20.1. However overall extensions greater 
than 20.1 can be observed in normal film casting operations and are found to 
be stable. A number of factors neglected in the simple film flow model may con- 
tribute to the enhanced stability of the flow. In  a series of papers Shah & Pearson 
(1972a, b,  c )  extended the work of Pearson & Matovich to study the effects of 
temperature-viscosity dependence and departure from Newtonian behaviour 
on the stability of fibre spinning. These authors concluded that these neglected 
factors can greatly enhance the stability of the threadline. Extension of the 
present analysis to include these factors can, in principle, be carried out; how- 
ever, the mathematics and computation involved are likely to be much more 
complicated. This has not been attempted. 

The author wishes to thank Prof. J. R. A. Pearson for supervising this work 
and the Lee Foundation, Singapore, for providing financial support. The major 
part of the work was carried out in the Department of Chemical Engineering, 
University of Cambridge. 

Appendix. Derivation of the integrated force and mass balance equations 
If all but viscous terms are neglected, the integral form of the equation of 

motion for a fluid reduces to 
,l 

fs tijnj dS = 0. 

The surface integral is taken over an arbitrary closed surface S in the fluid. 
Consider the infinitesimal film element lying between x and x+dx and z and 
z + dz. In  the case of steady flow, the viscous stress tensor tij is non-vanishing over 
the two areas normal to the direction of flow and zero elsewhere. The above 
equation reduces to 

dhtijldx = 0 

and hence (7). In  the case of the perturbed flow, tij vanishes only on the two free 
surfaces. The x component of this equation reduces to 

aht,,/ax + aht,,laz = o 

aht,,px + alttzz/az = 0. 
and tho z component to 
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In  integral form the continuity equation for an incompressible fluid is 

where r is the volume enclosed by the closed surface S. Consider again the film 
element lying between x and x + dx, and z and z + dz. On the free surfaces the 
velocity has no normal component and hence there is no contribution to the 
surface integral. In this case the continuity equation yields 

auh awh ah 
ax az at 
-+- = __. 
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